
Test Input Generation for Red-Black Trees using
Abstraction

Willem Visser and Corina S. Păsăreanu
NASA Ames Research Center
Moffett Field, CA 94035, USA

{wvisser,pcorina}@email.arc.nasa.gov

Radek Pelánek
Masaryk University

Brno, Czech Republic
xpelanek@fi.muni.cz

ABSTRACT
We consider the problem of test input generation for code
that manipulates complex data structures. Test inputs are
sequences of method calls from the data structure interface.
We describe test input generation techniques that rely on
state matching to avoid generation of redundant tests. Ex-
haustive techniques use explicit state model checking to ex-
plore all the possible test sequences up to predefined in-
put sizes. Lossy techniques rely on abstraction mappings to
compute and store abstract versions of the concrete states;
they explore under-approximations of all the possible test
sequences. We have implemented the techniques on top of
the Java PathFinder model checker and we evaluate them
using a Java implementation of red-black trees.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Testing and Debugging—Testing Tools

General Terms: Algorithms, Verification

Keywords: Testing Object-oriented Programs, Model Check-
ing, Coverage, Red-Black Trees

1. INTRODUCTION
Almost all large software systems contain portions of code

that manipulate complex data. This is all the more true
today since object oriented programming languages are be-
coming more and more popular. It is imperative for the re-
liability of these systems that this code is tested adequately.
The most time consuming aspect of unit testing for this
kind of software is the generation of sequences of API calls
that cover the relevant structural and behavioral aspects of
the code. This process is difficult due to the fact that the
software under test (SUT) has “state” and it will react dif-
ferently depending on this state when a new call is made.

In this paper, we address the problem of automated gen-
eration of such sequences of API calls to ensure high de-
grees of code coverage. Many approaches for doing such
automated test sequence generation have been proposed -
see Section 5. Here we consider one class of search algo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

class Node { ...

public int elem;

public Node left, right;

}

public class BinTree {

private Node root;

...

public void add(int x) { ... }

public boolean remove(int x) { ... }

}

Figure 1: Java declaration of a binary tree

rithms that seems particularly promising for generating test
sequences to achieve high code coverage: algorithms that
use state matching to avoid generation of redundant tests.
Essentially the idea is to exhaustively try all combinations
of API calls and parameters to these calls up to a specified
limit, but after each call the state of the SUT is analyzed
to see if the “same” state has been seen before; if so, that
sequence is discarded, if not the search continues with the
next call. During this search the code coverage is measured
and whenever new coverage is obtained the sequence of calls
to achieve that coverage is recorded.

Our contribution is an integrated framework that uses
state matching for automated test generation. The frame-
work also incorporates a technique based on random selec-
tion - to be used as a point of comparison with state match-
ing techniques. We show that there are a number of different
options for the state matching and not all of them need to
be a precise/complete matching, i.e. two states that are
not exactly the same can be considered equivalent and that
can improve the efficiency of the search - although it is a
lossy search since parts of the feasible input space can be
discarded. In particular we show that a matching on the
structure or shape of a container is a very efficient way to
achieve good coverage. We use the Java PathFinder [11, 13]
model checker as the basis for building the test generation
framework. We evaluate the framework on a Java imple-
mentation of red-black trees.

2. EXAMPLE
We illustrate our test generation framework on a Java im-

plementation of a binary search tree (Figure 1). Each tree
has a root node. Each node has an integer elem field and
left and right children. Values are added and removed
from the tree using the add and remove methods respec-

static int M; /* sequence length */

static int N; /* parameter values */

static BinTree t = new BinTree();

public static void main(String[] args) {...

1: for (int i=0;i<M;i++) {

2: Verify.beginAtomic();

3: int v = Verify.random(N-1);

4: switch (Verify.random(1)) {

5: case 0: t.add(v); break;

6: case 1: t.remove(v); break;

}

7: Verify.endAtomic();

8: /* Verify.ignoreIf(store(abstractMap(t))); */

} }

Figure 2: Environment for concrete search

tively.
A test input for BinTree consists of a sequence of method

calls in the class interface (e.g. add and remove), with cor-
responding method arguments, that builds relevant object
states and exercise the code in some desired fashion. Here
is an example of a test input for BinTree:

BinTree t = new BinTree();

t.add(1); t.add(2); t.remove(1);

Typically, checking the correctness of executions for such
test inputs relies on design-by-contract annotations trans-
lated into run-time assertions. One can also check class in-
variants (repOK predicates [3]) or just absence of run-time
errors (e.g. absence of uncaught exceptions).

Our approach integrates several techniques for test input
generation in a unified model checking framework. The ap-
proach requires the user to produce an environment, i.e. a
test driver for the Java implementation (the system under
test SUT). In this paper, we consider nondeterministic envi-
ronments that execute all sequences of API method calls up
to a user-specified size M. The user also needs to specify the
range of values for the method parameters [0, N-1].

The model checker analyzes the composition of the con-
tainer and the environment and it generates sequences that
achieve the desired testing coverage. We use basic block cov-
erage, as a representative example of a widely used struc-
tural coverage measure. We also consider a simple form of
predicate coverage [2] that measures whether all combina-
tions of a predetermined set of predicates are covered at each
basic block. The user may choose between several tech-
niques that our framework implements (they are described
in detail in the next section).

3. TEST GENERATION TECHNIQUES
“Classical” Exhaustive State Space Search We illus-

trate this technique using the BinTree example introduced
in the previous section. The testing environment is illus-
trated in Figure 2. The environment contains special JPF
annotations (Verify): beginAtomic() ...endAtomic() spec-
ify that the execution of the enclosed block should proceed
atomically; random(N-1) returns values [0, N − 1] nondeter-
ministically.

7

5

3

1

8

1:

2:

3: 4:

5:

6

5

3

2

8

1:

2:

3: 4:

5:

1 2 3 0 0 4 0 0 5 0 0 1 2 3 0 0 4 0 0 5 0 0=
Figure 3: Abstraction recording shapes

By default, JPF stores all the explored states (and it
backtracks when it visits a previously explored state). This
straight-forward approach does not scale well for large val-
ues of M and N - the number of possible test sequences be-
comes quickly intractable (the state space explosion prob-
lem). One way to address this problem is to use heuristic
search; JPF supports several heuristics (guided search, beam
search). Another solution is to perform concrete execution
with abstract matching as described below.

Concrete Search with Abstract Matching The idea
is to use the model checker to perform the concrete execu-
tion of all the possible method sequences (as above) but to
store abstract versions of the concrete states, and use these
abstract states to perform state matching (and to backtrack
if an abstract state has been visited before). This effectively
explores an under-approximation of the space of possible
method executions.

In order to apply this technique for BinTree we use the
environment illustrated in Figure 2, which includes state-
ment 8: Verify.ignoreIf(store(abstractMap(t))).

abstractMap computes an abstraction of the concrete con-
tainer state of the binary tree referenced by t;

store directs the model checker to store the computed ab-
straction;

Verify.ignoreIf directs the model checker to backtrack if
it has seen this abstraction before.

Note that state matching is now performed only on the
state of the container object (referenced by t). This allows
us to abstract away the information that is irrelevant to test
generation, i.e. the values of local variables i and v are no
longer considered to be part of the state. The user may
choose from several default abstractions that are provided
by JPF or may create new abstraction mappings.

One default abstraction that we have found useful records
only the (concrete) heap shape of a container, while it ab-
stracts away the data fields from each container element.
This abstraction is illustrated in Figure 3, which depicts
two binary search trees. Circles denote tree nodes; numbers
inside circles denote the elem values; null nodes are not rep-
resented. The trees have the same heap shape - hence they
will be matched during model checking (although the actual
elem values are not the same). Heap shapes are represented
in a normalized form, as sequences of integers (depicted in
rectangles in Figure 3), and are obtained through a process
called linearization [10, 15]. The linearization of an object
(e.g. the tree root) starts from the root and traverses the

1B 2R 3B 0 0 4B 0 0 5R 0 0 1B 2B 3R 0 0 4R 0 0 5B 0 0=

3

6

8

52

1:

2:

3: 4:

5:

1

3 8

1:

2:

3: 4:

5:

7

5

Figure 4: Abstraction recording shapes and colors

heap in depth first search order; it assigns a unique identi-
fier to each object and it backtracks when it detects a cycle;
null pointers have values 0. Comparing shapes reduces to
comparing sequences.

This abstraction can be made more precise by extending
it to record information about the container elements. For
example, consider two red-black trees in Figure 4. Red-black
trees are binary search trees with one extra bit of informa-
tion per node: its color, which can be black or red (in Fig-
ure 4, filled circles denote black nodes while empty circles
denote red nodes). In Section 4, we will analyze red-black
trees as given in the java.util.TreeMap library.

Figure 4 also shows the new abstract representations, which
augment the shape with the color values. Note that the two
trees will no longer be considered to be the same (although
they have the same shape). The abstraction for red-black
trees can be augmented further, to also encode the actual
concrete elem values of each node. Here is an example:
1B7 2R3 3B1 0 0 4B5 0 0 5R8 0 0.

In general, the user can specify which data fields to be
added to the linearization of an object. When all the fields
are selected the state matching is complete and it can form
the basis of an exhaustive technique (see Section 4); the
approach is similar to the linearization used for representing
the complete concrete heap (shape plus data), to achieve
heap symmetry reduction in model checking [10].

Random Search The environment that we use for ran-
dom search is similar to the one presented in Figure 2, except
that the nondeterminism is solved by random choice. When
one (random) run is completed the search is restarted from
the initial state and this process is repeated up to a user
specified limit. In our experiments, we set the limit on the
number of runs to 1000. Random search can be run stand-
alone or using JPF - for our experiments we chose to run it
inside of JPF. Note that due to technical reasons of JPF im-
plementation, states are stored during the search (but they
are never used).

4. EVALUATION
As mentioned, we used the JPF model checking tool to im-

plement our testing framework. We used the listener mech-
anism [11] to observe the sequences of API calls performed
and output the sequence when a specific coverage goal is
reached. This test listener keeps track of the coverage ob-
tained and calculates the average test input length. For the
abstraction mappings the user can select the fields to be
added to the linearized nodes of a structure.

As a system under test we used a Java implementation
of red-black trees (from java.util.TreeMap). The Java

Basic Block Coverage: Exhaustive Techniques

Cov. Seq.len. Time Mem Avg.len.

Model Checking 37 6 38s 243M 4.2

Complete Abs. 39 7 9s 34M 4.3

Basic Block Coverage: Lossy Techniques

Cov. Seq.len. Time Mem Avg.len.

Shape Abs. 39 10 2s 6M 4.6

Random Search 39 10 18s 5M 7.1

Predicate Coverage: Exhaustive Techniques

Cov. Seq.len. Time Mem Avg.len.

Model Checking 55 6 38s 229M 4.5

Complete Abs. 95 10 271s 844M 5.8

Predicate Coverage: Lossy Techniques

Cov. Seq.len. Time Mem Avg.len.

Shape Abs. 106 22 182s 98M 6.9

Random Search 106 39 78s 17M 25.5

Table 1: Results for exhaustive vs. lossy test gener-

ation techniques for TreeMap.

methods were instrumented to measure basic block coverage
(which implies statement coverage). At each basic block,
we also measure the coverage of all the combinations of a
set of predicates chosen from conditions in the source code.
The container class is augmented with an environment as
described in Section 3.

We compare all the techniques described in the previous
section. We divide the techniques into two categories: ex-
haustive and lossy. Exhaustive techniques include: explicit
state model checking and concrete search with complete ab-
stract matching (i.e. linearization of a structure with all
fields included). Lossy techniques include: concrete search
with abstract matching based only on shape and random
search. The results are summarized in Table 1 (JPF is
used with breadth first search order). We report cover-
age (Cov.), test sequence length (Seq.len.), time (seconds),
memory (MB), and average test sequence length (Avg.len.).
The exhaustive experiments were preformed on a 2.66GHz
Pentium machine running Linux and the lossy experiments
on a 2.2Ghz Pentium running Windows 2000. For each tech-
nique we report the best result, i.e. the best coverage that
was obtained at the shortest sequence length without run-
ning out of memory.

We have experimented with different abstraction map-
pings, for example an abstraction recording the shape and
color for TreeMap (see section 3); we only report here the
results for two abstractions, where we use either just the
shape or the shape with all the fields. Note that using all
the fields in a structure gives an exhaustive search, since the
contents of the container uniquely identifies its state - for
example, the length of the sequence of calls has no bearing
on the behavior of the container.

Exhaustive vs. lossy search The results indicate that
all the lossy techniques achieved the optimal basic block
coverage (39) and where comparable, they achieved it faster
and with less memory than the exhaustive techniques.

Abstract matching State matching based on the shape
abstraction achieves the highest coverage, for the shortest
sequences. Due to abstraction, it consumes less memory
than other techniques. Only random search, that essentially

has no memory footprint, uses less memory when coverage
is the same (but for longer test sequences). The complete
abstraction that takes the shape and all fields into account
performs well, but uses more time and memory. Note that
this technique performs consistently better than “classic”
model checking which is closely related. We conjecture that
for the analyzed TreeMap implementation, the shape is an
accurate representation of the container state and hence the
shape abstraction is appropriate here. It remains to be seen
whether this will hold for general programs.

Random search Random search achieved both optimal
basic block coverage and optimal predicate coverage, but as
expected for longer sequence lengths than the other tech-
niques. However, we believe that random search will begin
to suffer once we consider more complex environments (and
methods with complex input parameters).

5. RELATED WORK
The work related to the topic of this paper is vast, and

for brevity we only highlight here some of the closely re-
lated work. The AsmLT model-based testing tool [7] uses
concrete state space exploration techniques and abstraction
mappings, in a way similar to what we present here. Ros-
tra [15] also generates unit tests for Java classes, using bounded
exhaustive exploration of sequences with concrete arguments
and abstraction mappings. While both these tools require
the user to provide the abstraction mappings, we provide
automated support for several shape abstractions (see the
experiments).

The Korat [3] tool, supports non-isomorphic generation of
complex input structures. Unlike the work presented here,
this tool requires the availability of constraints representing
these inputs. Korat uses constraints given as Java predicates
(e.g. repOK methods encoding class invariants).

The work presented here is related to the use of model
checking for test input generation [1, 5, 8, 9]. Model check-
ing lends itself well to test input generation, since one can
specify as a (temporal) property that a specific coverage
cannot be achieved and the model checker will report a
counterexample trace, if it exists, that then can be trans-
formed into a test input to achieve the stated coverage. Our
work shows how to enable an off-the-shelf model checker to
generate test sequences for complex data structures. Note
that our techniques can be implemented in a straightforward
fashion in other software model checkers (e.g. [6, 4]).

6. CONCLUSIONS
We described and compared a number of test input gener-

ation techniques all based on state matching. We measured
the techniques in terms of coverage achieved by the gener-
ated tests. Although for the simple basic block coverage
the exhaustive techniques are comparable to the lossy ones,
for predicate coverage (which is more difficult to achieve),
the lossy techniques are better at obtaining high coverage.
However, one should not lose sight of the strong guarantees
that an efficient exhaustive search can provide: up to the
maximum sequence length that allows exhaustive analysis,
one can show that the implementation is free of errors.

The techniques presented here only considered concrete
data, but it has been shown that using symbolic data al-
lows efficient test input generation for code manipulating
complex data [12, 14, 16]. State matching during symbolic

execution however requires subsumption checking. We plan
to extend the current framework to also address symbolic
execution with efficient subsumption checking.

We only focussed here on obtaining code coverage and
not on finding errors - this was a conscious decision to avoid
bias from different fault seeding approaches. However in
the future we would like to investigate whether the tests
that obtain high coverage are also likely to detect faults.

7. REFERENCES
[1] P. Ammann, P. E. Black, and W. Majurski. Using

model checking to generate tests from specifications.
In Proc. of the 2nd IEEE ICFEM, 1998.

[2] T. Ball. A theory of predicate-complete test coverage
and generation, 2004. Microsoft Research Technical
Report MSR-TR-2004-28.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc.
of ISSTA, July 2002.

[4] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In Proc. 22nd ICSE, June 2000.

[5] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Proc. of the 7th ESEC/FSE.
Springer-Verlag, 1999.

[6] P. Godefroid. Model checking for programming
languages using VeriSoft. In Proc. 24th Annual POPL,
Paris, France, Jan. 1997.

[7] W. Grieskamp, Y. Gurevich, W. Schulte, and
M. Veanes. Generating finite state machines from
abstract state machines. In Proc. of ISSTA, July 2002.

[8] M. P. E. Heimdahl, S. Rayadurgam, W. Visser,
D. George, and J. Gao. Auto-generating test
sequences using model checkers: A case study. In
Proc. of 3rd FATES, Montreal, Canada, Oct. 2003.

[9] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A
temporal logic based theory of test coverage and
generation. In Proc. 8th TACAS, Grenoble, France,
April 2002.

[10] R. Iosif. Exploiting heap symmetries in explicit-state
model checking of software. In Proc. 16th ASE, Nov.
2001.

[11] Java PathFinder.
http://javapathfinder.sourceforge.net.

[12] S. Khurshid, C. S. Păsăreanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In Proc. TACAS, 2003.

[13] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. of 15th ASE, Grenoble,
France, 2000.

[14] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test
input generation in java pathfinder. In Proc. of
ISSTA, 2004.

[15] T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented
unit tests. In Proc. of 19th ASE, 2004.

[16] T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented
unit tests using symbolic execution. In Proc. of
TACAS, 2005.

